% RAPIDFORT

The Hidden Dangers
of Proprietary "Open
Source" Distribution

Proprietary Operating Systems
Threaten Developer Freedom

,,,,,,,,,,,,

v

The open source ecosystem has long thrived on transparency, community oversight, and
freedom of choice. The results have been transformative. However, a new breed of
Linux distributions is emerging that threatens these fundamental principles. Proprietary
open source distributions present themselves as security-focused solutions, but beneath
the surface lies a dangerous shift toward vendor lock-in, opacity, and potential
exploitation.

The Erosion of Community Accountability

Traditional enterprise Linux distributions like Ubuntu and Red Hat's Universal Base Image
(UBI) benefit from something invaluable: the scrutiny of millions of developers worldwide.
When vulnerabilities are discovered, when packages break, when decisions go wrong, the
community responds immediately with feedback, patches, and alternatives. This is the
tried and tested model, and billions of software systems run on and benefit from this
approach.

Proprietary distributions operate in a fundamentally different paradigm. Without the
breadth of community oversight that established distributions enjoy, there are no natural
checks and balances. The vendor becomes both the gatekeeper and the judge of what
constitutes vulnerabilities, security, stability, and quality. This concentration of control
eliminates the democratic feedback loop that has made open source software trustworthy
for decades.

Community Oversight: Feedback & Patches Vendor Control: No External Checks

The Hidden Dangers of Proprietary "Open Source" Distributions 2

v

v

The Instability Time Bomb

Long-Term Support (LTS) releases exist for a reason. Enterprise applications require
stable, predictable platforms that won't introduce breaking changes unexpectedly.
Ubuntu's 5-year LTS cycles and Red Hat's decade-long support windows provide the
foundation that critical applications depend on.

Proprietary OS distributions often tout their "always up-to-date" approach, with daily or
continuous updates to the base OS. While this sounds appealing from a security
perspective, it creates a nightmare scenario for production environments. Your application
that worked yesterday may break today because a core library was updated. Multiply this
risk across every update cycle, and you've created an environment of perpetual instability
where "upgrading" becomes a game of Russian roulette.

LTS Release Proprietary OS Distributions
Predictable - Stable - Reliable Unstable - Risky - Breaks Unexpectedly

The Transparency lllusion

Security scanners and vulnerability management tools rely on clear, transparent
information about how operating systems and packages are patched. Established
distributions publish detailed security advisories tied to public CVE databases, allowing
independent verification and assessment.

The Hidden Dangers of Proprietary "Open Source" Distributions 3

v

Proprietary distributions often maintain their own advisory systems—closed ecosystems
where they control not only the patches but also the narrative surrounding vulnerabilities.
This creates a dangerous possibility: CVEs can be "cloaked" or downplayed, hidden
behind proprietary classification schemes that obscure the true risk landscape. When a
vendor controls both the problem and its disclosure, the potential for conflicts of interest
becomes severe. Companies may believe they're secure based on the vendor's
assurances, while real vulnerabilities lurk beneath the surface, invisible to third-party
security tools. There are fewer eyes reporting vulnerabilities, so in theory there are less
vulnerabilities, but this is an illusion.

The Lock-In Trap: From Open Source to Single Source

Here's where the business model reveals its true nature. These distributions position
themselves as "open source" to gain credibility and initial adoption, but the reality is far
different. Once you've migrated your application to run on a proprietary distribution, you're
no longer participating in open source—you're dependent on a single source. Your
software is no longer under your control; you become dependent. If you need to patch or
update your software, you need to return to the vendor to do so.

Thus, single-source dependencies create acute leverage for price increases. We've all
watched this playbook before. The parallels to Broadcom's acquisition of VMware are
chilling: once customers are sufficiently locked in, prices rise dramatically. For
organizations running FedRAMP-certified applications or complex on-premise solutions,
removing a base OS isn't a simple afternoon project—it's a months-long engineering effort
requiring re-certification, testing, and deployment. Prices can be raised up to the
threshold of switching costs, which are high.

There is a hard-to-anticipate trap: the more 8 g
components you rely on from a vendor, such o - @
as not just the containers but also the el o
packages themselves, the more dependent ©
you become. It’s possible that your -
. od Vendor
software has now become their software. ‘ LockeIn Y Open Ecoystem

During that migration window, you're ‘
exposed to whatever pricing the vendor B =
decides to impose. It's an extortion risk,

plain and simple.

Gravity of Dependency

The Hidden Dangers of Proprietary "Open Source" Distributions 4

v

A4

The Bait-and-Switch Pricing Model

The initial pitch is always attractive: low costs, sometimes even free tiers for developers.
"Try it out," much like other insidious methods for creating acute dependence, the first
one is always free. They say. "See how much better our security approach is." And
developers, always looking for better tools, often migrate their applications naively.

However, once the migration is complete—and they may even assist you in migrating by
offering low-cost professional services —once your containers are built on their base
images, once your CI/CD pipelines depend on their package repositories, and once your
security compliance is tied to their advisories—the pricing changes. Subscription costs
increase. Features get moved to higher tiers. The initial attractive pricing and the
perceived, not actual, security benefit were never the real business model; it was the
customer acquisition cost.

Ecosystem Fragmentation and Package Availability

Red Hat UBI and Ubuntu maintain vast package repositories built over decades,
supporting countless applications and use cases. Free to use and likely to be available on
that basis for a long time. Proprietary distributions, by their nature, cannot and will not
match this breadth. Single companies, however well-financed, cannot out-produce the
entire open-source community.

The vendor must port, maintain, and support every package in their ecosystem. This
means two things: first, many packages available in established distributions simply won't
exist in proprietary alternatives, making some applications impossible to deploy without
significant rework. There isn’t one-for-one package equivalency. Second, every package
you do use must come from that same proprietary vendor, further deepening your
dependence.

This creates application incompatibility issues that may not be apparent until you're deep
into a migration. You can’t migrate 99% of your code; you need to do it all to ensure
production stability. Legacy applications, specialized tools, or software with unusual
dependencies may simply not run—or may require extensive modification to work with the
limited package ecosystem.

The Hidden Dangers of Proprietary "Open Source" Distributions 5

N
>

Development Speed and Vendor Release Cadence
Dependency

Another less obvious risk than price lock-in, is the risk of requiring a package in order to
completely build an image. If you are running on Debian today, and your container has
packages A, B, C, D, and E, and you port your software to a closed system, for your
container to be fully functional, you need packages A, B, C, D, and E. However, if the
closed system doesn’t have package E, it needs to be built, and you must wait for the
vendor to build it. And maintain it going forward. Tying you into their release cycles, their
resourcing constraints, and priorities. This clear loss of independence and control
prevents you from moving faster while you wait for a vendor to deliver what you need.
And hope they maintain it. This is in contrast to the open-source approach, where you can
simply pull package E from the open-source repository. Software evolves, and if package
F is needed in the future, the cycle repeats.

CLOSED SYSTEM

Your Container

l

Vendor Package Repository
(Closed)

N

Missing Package E

\

Wait for Vendor to
Build & Maintain

/Oo

Vendor

4 ; 2 I Release Cycle

Dependency

The Hidden Dangers of Proprietary "Open Source" Distributions

OPEN SOURCE SYSTEM

Your Container

Open Source
Repository

l

Package E Available

l
]
&

Instant Access &
Community Maintenance

> The Path Forward: Choosing True Open Source

The open source movement succeeded because it distributed power, leveraged an army
of contributors, created transparency, and built communities that could hold projects
accountable. Proprietary distributions wrapped in open source marketing language
threaten to undermine these principles.

Before adopting these platforms, organizations must ask hard questions:
+ Can we migrate all of our applications or just a select few?
« Can we easily migrate away if needed?
Do independent security researchers have full visibility into vulnerability handling?
+ Is there genuine community governance, or is it vendor-controlled?
+ What happens to our pricing in year three? Year five?

Can our entire application stack run on this platform, or will we face compatibility
issues?

The allure of "better security" is powerful, but security without transparency is just another
form of vendor control. True open source provides both security through community
scrutiny and autonomy and freedom through open standards and multiple
implementations.

The choice isn't between security and open source. It's between genuine open source
security—backed by community oversight and vendor diversity—and proprietary security,
where you must simply trust the vendor's claims and accept the lock-in that comes with
that trust.

Choose wisely. Your organization's freedom depends on it.

The Hidden Dangers of Proprietary "Open Source" Distributions 7

v

About us

RapidFort, Inc. is a leading software supply chain security company that provides
an innovative platform designed to automatically secure container applications and
accelerate compliance processes. The company's comprehensive solution
addresses critical cybersecurity challenges by removing up to 95% of Common
Vulnerabilities and Exposures (CVEs) from container images without requiring any
code changes.

Visit our website to learn more.

- A
The Hidden Dangers of Proprietary "Open Source" Distributions V,RAPI DFORT

http://www.rapidfort.com

